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Abstract— Developing a general-purpose wearable real-time
fall-detection system is still a challenging task, especially for
healthy and strong subjects, such as industrial workers that
work in harsh environments. In this work, we present a hybrid
approach for fall detection and prevention, which uses the
dynamic model of an inverted pendulum to generate simulations
of falling that are then fed to a deep learning framework.
The output is a signal to activate a fall mitigation mechanism
when the subject is at risk of harm. The advantage of this
approach is that abstracted models can be used to efficiently
generate training data for thousands of different subjects with
different falling initial conditions, something that is practically
impossible with real experiments. This approach is suitable for
a specific type of fall, where the subjects fall without changing
their initial configuration significantly, and it is the first step
toward a general-purpose wearable device, with the aim of
reducing fall-associated injuries in industrial environments,
which can improve the safety of workers.

I. INTRODUCTION
According to the World Health Organization (WHO), falls

take the lives of 684 thousand people each year. In addition
to the number of deaths, another 172 million people suffer
disability each year due to falls. Over the past two decades,
fall-related deaths have increased much faster than any other
type of injury. This increase is due to many factors, including
an aging population and urbanization patterns [1].

Although often overlooked, the injuries caused by falls
have many consequences, not only for the person who falls
and those close to them but also for the healthcare system.
Specifically, the total medical cost for falls of elderly people
in the US was approximately $50 billion. Slip-and-fall-
related injuries in the workplace account for a large number
of injuries in all work sectors [1], including office work, and
are the reason for major absences from work of more than
three days, especially in Small and Medium-sized Enterprises
(SMEs).

In particular, in Italy, falls from heights cause even severe
injuries in workers with an average duration of absence of
47 days [2]. The resulting loss of about 2.5 million working
days in all sectors is one of the leading causes of absence
from work, with obvious negative economic repercussions
for the entire national production system. The compensation
paid as a result of fall injuries amounts to more than 90
million euros (direct costs) and represents one of the first
items of expenditure for the Italian Workers’ Compensation
Authority (INAIL). Since indirect costs can be considered
as a first approximation to be about three times as high as
direct costs, the total costs of injuries from falls amount to
more than 370 million euros per year [2].
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A key aspect of developing fall prevention systems is the
detection and/or prediction of the fall event. Recent devel-
opments in the field of embedded sensors and electronics
allow the integration of these technologies into wearable
devices. However, real-time fall detection is still challenging
due to the data quality (in the presence of interference and
unstructured environments), the quantity, the heterogeneity
of data, and the stringent processing time requirements (the
fall must be detected within a narrow time frame).

Our work, therefore, takes the critical issues and op-
portunities highlighted above and involves the study and
integration of Machine Learning (ML) and Deep Learning
(DL) algorithms for the detection, prediction and forecasting
of falls. Our approach consists of three parts: (1) detecting a
fall while happening, (2) predicting when the subject might
be harmed during the fall in the near future, and (3) activating
the prevention mechanism to save the subject. Moreover,
we introduce a new variable, in the form of a probability,
which uses a-priory information (e.g., weakness, some health
condition etc.) about the subject combined with biometric
signals to monitor their health; for estimating the probability
of an imminent fall in the future (e.g., a sudden drop of blood
pressure). Most studies focus on detecting the fall after the
impact occurs [3], [4], [5], [6]; but in our case, we not only
wish to estimate whether the subject is at risk while falling
(and obviously before an impact) but also the probability
of someone falling in the near future. In this paper, we
present our preliminary results on detecting and predicting
an occurring fall. Our approach is a hybrid approach utilizing
dynamic models and deep learning algorithms for the given
task.

This research aims to find a real-time software solution
that can be integrated into a plug-and-play wearable de-
vice/robot suitable for different people, regardless of age,
gender, and physical structure; it should work efficiently
and effectively in most environments to prevent harm to
workers as a result of an impact after falling from their
feet, or heights. Unlike most previous studies [7], [8], [9],
[10], we focus on developing a wearable for industrial
workers. Particularly those who work on construction sites
are subject to higher risks; they are forced into heavy and
stressful repetitive operations that affect their psychological
and physical health more than other categories. Moreover,
most studies ignore the reaction of the subject. For example,
a young and healthy subject will not fall the same way as an
older person but, in many cases, may be agile enough to stop
the fall by moving quickly or getting a hold of a surrounding
object. This introduces false positives that cause the wrong
activation of the prevention system and could dissuade the



Fig. 1. XSens DOT charging case and 5 IMUs.

users from wearing it. So, detecting a fall is not sufficient for
the purpose of our study but also activating the prevention
mechanism at the appropriate time, which depends on the
user’s physical abilities, current mental and health state, and
surroundings.

II. METHODOLOGY AND SENSORS

As pointed out in the previous sections, multiple types
of sensors could be suitable for our objective. However,
the sensors that cannot be worn due to their size, energy
consumption, and computational burden are not investigated
in this study since our aim is to create a wearable device for
continuous and daily use. These include most vision-based
sensors, which are usually placed indoors in a static and
fixed manner and are also constrained by privacy issues. So,
the most appropriate sensors are wearable devices that can
provide inertial, physiological, and biological measurements.

Contextually to achieve the objectives of the study, it
is crucial to evaluate and compare the performance of the
ML/DL techniques used with such sensors, their training,
and real-time execution. In particular, DL techniques, such
as Neural Networks (NNs), Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs), are ex-
tensively investigated since autonomous feature extraction
exploits data heterogeneity better than ML techniques [7].

In the conduct of this study, a key resource is the public
datasets already used for fall detection in the literature, i.e.
the SisFall dataset [11], UP-Fall [12] and UMAFall [13].
With these datasets, it is possible to compare the results
obtained with each sensor combination and the results ob-
tained from state-of-the-art and proposed ML/DL techniques.
However, as noted in [7], most public datasets utilize few
sensors and contain only falls simulated by researchers.
Therefore, they do not reflect all types of people and the
subjects are aware that they are going to fall, affecting their
behaviour. These datasets help to understand the dynamics of
the fall but not to know its causes. Moreover, analyzing the
datasets, we realized that the authors use sensors of limited
quality in some of them. Thus, the stored data are polluted by
noise and suffer from the problem of sensor drift, especially
if the participants perform high-impact activities, such as
running or walking fast, before simulating the fall.

Given the complexity of the fall detection task, there is

Fig. 2. A human modeled as an inverted pendulum for generating
simulations of falling.

no unique and exhaustive dataset that can be used. For this
reason, one of the final goals will be to build a multi-
sensor dataset with as many subjects with different physi-
cal structures as possible, monitoring not only the Inertial
Measurement Units (IMUs) but also the biometric sensors.

The use of biometric signals is necessary to detect a
broad spectrum of psycho-physiological effects that can be
correlated to the risk of falling (e.g., heat stroke, fainting
or high mental load). In addition, a pair of motion pressure
insoles could be used to reconstruct the gait phases, the user’s
Center of Mass (CoM), the foot Center of Pressure (CoP),
and the mass distribution on each foot. In conjunction with a
MoCap system, they can provide comprehensive information
on the user’s balance status in static and dynamic postures.

In the first part, we will evaluate only IMUs. For initial
experiments, we plan on using the XSens DOT [14], Fig. 1,
which is a set of 5 self-contained wireless IMUs that can
be integrated into clothing. This system is flexible regarding
body positioning and the number of sensors in use, so it is
very handy for prototyping the final multiple IMU system.

III. FALL DETECTION, PREDICTION AND
FORECASTING

For training ML/DL algorithms that can detect and predict
falling, we need data that can capture the basic dynamics of
falling and, simultaneously, they are simple enough to cover
all the different variations of falling and different character-
istics of humans. Although public datasets exist [11], [12],
[13], the number of different subjects and fall scenarios is
very limited, and deep learning algorithms need big data to
be trained and provide generalized solutions.

Creating a generalized model for all types of falls while
taking into account all possible actions and interactions of
a human is an extremely difficult task. Hence, we follow
a divide-and-conquer approach, with our first sub-problem
being cases where users retain their posture throughout the



Fig. 3. Example of an IP falling from different initial angles and velocities.
The IP is connected to the ground via a frictionless revolute joint, and the
only force acting on it is the force of gravity.

duration of the fall (or do not change their configuration sig-
nificantly). In this type of fall, a human can be approximated
as an Inverted Pendulum (IP), as presented in Figure 2. This
type of assumption has also been used in humanoid robots for
fall detection and prevention [15]; however, in our case, we
cannot obtain a detailed dynamic model of each human that
uses the wearable, and for this reason, we seek a generalized
real-time solution with the use of ML/DL approaches.

This simplified model, which is computationally cheap,
allows the simulation of hundreds of thousands of falls
with different initial conditions and physical characteristics
(height, inertia etc.) within a few hours, in contrast to
computationally expensive simulations of realistic humanoid
models that might require significantly more time to com-
plete. Figure 3 shows the evolution of the angle of an IP
falling from different initial angles relative to the direction
of gravity. The IP is connected to the ground via a frictionless
revolute joint, and the only force acting on it is the force of
gravity.

For practical purposes, one or a set of IMUs that output
orientation data can be attached to a user. The number and
placement of the IMUs are still subject under investigation,
which will be the result of real experiments. In the dataset
of [16], the authors have chosen to place an IMU on the
user’s waist, and [17] on the left wrist, at the right pocket
of the user’s pants, in the middle of the waist, and under the
neck. The complete framework is currently being integrated
into a real-time system.

A. Fall Detection and Prediction

A deep Recurrent Neural Network (RNN) was chosen
for fall detection, in which the input of the network is a
time series composed of the relative angle of the IP and the
direction of gravity, and the output is the falling probability
P(falling). If P(falling) > 0.5, the subject is assumed to be
falling. A genetic algorithm was used to identify the best
network architecture by selecting the layer type between
Long Short-Term Memory (LSTM), Bidirectional LSTM
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Fig. 4. Example of fall forecasting of an IP falling with a non-zero initial
angle and velocity.

(BiLSTM) and Gated Recurrent Unit (GRU), and the number
of hidden units in the range [30, 100] to maximize clas-
sification accuracy and recall. The optimization framework
evaluated 100 different networks for 100 epochs each, and
among them, a network with a hidden layer of 100 GRUs was
selected. This is still incomplete work, and the next step is
to measure network performance on our future multi-sensor
dataset. Fall prediction will be the final part of the study
since it requires the availability of experimental subjects and
biometric sensors.

B. Fall Forecasting

For this work, we refer to fall forecasting as the forecasting
of the future state of a subject that is currently falling,
assuming that the subject will continue to fall. Figure 4
demonstrates an example of the prediction approach in which
an IP is left to fall under gravity with a small no-zero initial
velocity and angle. The dashed yellow line (the prediction)
almost overlaps with the future value (the blue line), and the
red line is the estimation of the network with the values given
up to that point. Note that this approach assumes that the user
will collide with the floor at approximately 90◦ (1.57 rad).
Taking into account the surroundings (e.g., a desk or a wall in
the direction of the fall) would require vision-based sensors
and is part of a future study.

To forecast a fall, a deep learning approach is used
to extrapolate the subject’s orientation into the future and
identify when the subject will be at risk of harm. Similar to
the approach for fall detection, a RNN was chosen for this
task. The input is the same signal used for fall detection (see
Section III-A), but in this case, the output is a time series of
the relative angle between the subject’s torso and the gravity
vector from an IMU (placement and number of IMUs are
still under investigation). The network architecture consists
of two layers of 100 GRUs each, and a simple trial-and-
error approach was sufficient to generate adequate results;
however, an optimization approach similar to that described
in Section III-A could be followed in the future, followed by
our own real experiments for validating our approach.
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